BLOG

データ分析

データ分析の考え方とは?代表的な9つの分析手法を解説

MARKETER'S NOTE

経営戦略においてIT技術の活用が一般的になり、企業内外で蓄積されたビックデータの利用が注目されました。データを活用した意思決定が求められるビジネスシーンにおいて、データ分析は重要な要素となります。本記事ではデータ活用の重要性と、データ分析を実行する9つの手法について紹介します。

データ分析とは

データ分析とは客観性がある行動ログや顧客情報、購買履歴、数値、テキストなどのデータを収集・蓄積されたビックデータを、目的に合わせて細分化・加工・処理し、有用な情報を導き出すことです。
分析対象となるデータは多岐に及びます。例えば、店舗での購入時のデータであるPOSデータや、Web閲覧履歴・検索履歴のような行動データ、顧客管理システムに蓄積される顧客情報や取得した年齢性別職業のような顧客属性データなどです。また分析するデータにはテキスト情報だけでなく、写真のような画像も含まれます。

データ分析によって得られた結果は、ビジネス現場で迅速な意思決定へ寄与し、的確な経営判断やマーケティング施策で活用されます。

重要なのは、データ分析の結果に対して、適切なアクションを実際に起こすことです。これによって、データ分析は効果を発揮します。そのため、分析を行う前に、「なんのために分析するのか」「どんなアクションへつなげるために分析するのか」という目的をしっかりと定めておくことが重要です。
加えて、このようにデータを有効的に活用するには、結果に対して客観的な視点で意思決定を行うことが大切です。

データ分析の代表的な9つの分析手法

データ分析をする際は、分析対象となるデータの種類や分析を行う目的に合わせて、適切な手法を利用しましょう。データ分析の手法によって、得意な分野や得られる結果は異なります。
ここでは代表的な9つのデータ分析手法と、具体的に得られる結果を紹介します。

アソシエーション分析

アソシエーション分析とは一見関係性のないデータ群から類似する特徴を見つけ、データ同士の関連性を抽出する分析手法です。「〇〇のときに△△になる」というデータ間にある隠れた関連性をマーケティングに反映させることで顧客の購買行動の予測や、商品の配置、デザインなどに活用することができます。

有名なモデルケースに「おむつとビールの関連性」があります。あるスーパーの買い物データを分析したところ、男性がおむつを買うとき、一緒にビールを購入していく事が多いという傾向が判明しました。これは、買い物を頼まれた父親が、おむつを購入するのと同時に自分が飲むビールを購入するためと考えられ、この関連性を利用しておむつ売り場とビール売り場を近づけるというマーケティング施策が行われたと言われています。

アソシエーション分析によって得た情報を活用することで商品のアップセルやクロスセルを適切に訴求することができるため、セールス向上に直接寄与することが可能になります。

バスケット分析

バスケット分析は消費者がある商品を購入したときに同時に購入される商品を分析する手法で、前述のアソシエーション分析から派生した分析方法です。

分析対象を購入商品に絞っているため、主にECサイトやリアル店舗で活用されます。関連性の高い消費の組み合わせを見つけることで、関連商品を紹介するレコメンドやプロモーションなどの施策を効果的に進めることができます。

構造的にはアソシエーション分析と同じですが、分析対象が狭いことから、大小問わず多くの小売店やネットショップの運営会社で導入しやすく、分析結果をマーケティング施策に反映させやすいことも特徴の一つです。
相性のよい組み合わせを見つけることで、従来の販売キャンペーンよりも消費者のニーズにより近い訴求が可能になります。これにより、非常に精度の高いセールス戦略を立てやすくなるのです。

クロス集計分析

クロス集計分析とは特定の条件でまとめられた属性データを2軸(あるいは3軸)で集計を行い、項目同士の相互関係を分析する手法です。

アンケート結果の集計で利用されることが多く、例えば集計したデータを性別や年齢、職業、住居地、家族構成などの属性データで縦軸と横軸をモデルとした表にあてはめることで相互関係を可視化することができます。

ある特定のサービスを利用している消費者に対し、利用している割合の調査を行なったとして、その結果を年齢や性別を軸に集計したときに、各年齢や性別における利用率の関係性を見ることが可能です。
その結果をマーケティング施策に落とし込むことで、プロモーションのターゲットや新サービスの開発などに反映することができます。

決定木分析

決定木分析とは1つの結果に対して「もし〇〇だったら」という仮説を基に結果予測を立てていき、クロス集計を繰り返すことで関連性を見出すことができます。

可視化されたデータは、樹形図のように一つの結果から枝分かれした形でグループが細分化されていきます。分析結果が枝分かれしていくことから「決定木」と呼ばれ、数値を予測したい場合は「回帰木」、区分の分類を行う場合は「分類木」と呼ばれます。
結果に対して仮説を繰り返し、何通りもの結果予測を行う特性から、リスクマネージメントの分野でよく利用されています。

マーケティングで決定木分析が活用されるのは、特定の商品やサービスの売れ行きを分析場合などです。例えば「スポーツドリンクが購入されたのか?」という結果に対して、「晴れか雨か」「気温」「曜日」などの属性を加えて分類していくことで、スポーツドリンクがもっとも売れる条件を抽出することができます。仮に「気温は関係なく、天候が影響する」とわかれば、その結果をプロモーションへ具体的に反映させていけるのです。

ロジスティック回帰分析

ロジスティック分析はある事象の発生率を可視化する分析手法です。1つの事象に対して「発生する」「発生しない」の結果を集計することで発生確率を分析することができます。

ロジスティック分析は幅広い分野で活用されており、マーケティング分野ではある商品が売れる確率を予測し、商品Aの購入有無という分析結果から顧客の特徴を捉えることができます。

また、ほかの代表的な例として「DMの開封率と購入確率」があります。一人あたりの購入確率を出せば、確率の高い消費者へ定めてDMを送れます。これにより、より多くの購入アクションが期待できるようになるのです。

医療分野では、ある病気の発症率を予測するために用いられます。例えば「特定の行動をしている人が、ある病気を発症する確率」を示すことで、病気の予防につながる行動を導けます。
有名な分析結果は、喫煙量と飲酒量に対する癌の発症率などです。このように特定の病気について、その発生率をそれと因果関係のある行動内容と結びつけて分析することで、予防プロモーションの内容・デザイン、予防施策のプロセス改善など、幅広い領域での意思決定に寄与します。

因子分析

因子分析とはビジネスに限らず多くの分野で利用される分析手法です。複数のデータ間から共通因子を見つけることで、消費者を理解するために活用されます。元々教育心理学の分野で開発されたと言われており、現在は研究のみならずマーケティングなどの領域でも利用される手法となりました。

因子とは結果を引き起こす要因を意味し、複数のデータ群の中で共通因子を見つけることができれば、消費者の潜在意識や隠れた意図を発見し、ターゲットを定めたマーケティングが行えます。
例えばある商品カテゴリーで、商品の選択時に重視する要素を分析するためにアンケートを実施したとします。因子分析では、「特定のカテゴリーに属する商品を使用しているユーザーが、共通して重視している点」を分析します。
これにより、そのブランドを利用しているユーザーたちが持つ「共通因子」を見つけることができます。これを基にすれば、ユーザーの購買意欲をより喚起しやすいプロモーション展開し、競合他社の商品との間に差をつけやすくなるのです。

ABC分析

ABC分析とは、商品や顧客などに対して発生する売上高やコスト、販売個数、在庫、不良品などの指標を、重要度に合わせA・B・Cでランク付けをする分析手法です。在庫管理や販促などで活用され、売れ筋メニューの識別や、在庫を圧迫する”死に筋商品”の割り出しを行うことができます。

店舗の売り上げに貢献している重点商品を理解することで、仕入れやプロモーションの強化が行えるため、売り上げアップが期待できます。また、余計な在庫を抱えないために、売り上げが見込めない商品を把握することで、在庫管理を効率的に行えるようになります。

ABC分析はコスト削減や効率的な経営戦略の立案など、多くの場面で利用されます。ランクの高い商品に対して人員を割く意思決定を迅速に行えるため、人的コストの削減も見込めます。

クラスター分析

クラスター分析とは、複数の異なるデータ群の中から似通ったデータを集めて集団(クラスター)として対象をグループとして分類する手法です。
クラスター分析の対象となるデータは企業や商品、値段、コスト、顧客属性など幅広く、それぞれを共通のルールを元にグループ化することで、各商品のポジションやセグメントなどの把握ができます。

クラスター分析は市場調査において活用されることが多く、消費者の購買パターンや男女別の購買傾向、同一ジャンルの商品におけるそれぞれの消費者属性の違いなどを抽出します。これにより、マーケティングにおけるターゲットの選定・セグメンテーションを、効率的に行えるようにする、という特徴があります。

主成分分析


主成分分析は複数の項目・種類があるデータを分析するときに利用される手法です。1つのデータが持つ多種類の属性を集約して、ごく少数の項目に変換することでデータをシンプル化し、全体像を把握しやすくします。

例えば、あるアンケートについて、多様な結果が膨大に返ってきた場合、さまざまな要素がそこに混在している状況が考えられます。そうしたとき主成分分析を用いることで、異なる要素を適切にまとめ、「40代で購買意欲が高い」など1つのカテゴリーとして扱えるようにするのです。

このようにデータの見通しをよくすることで分析しやすくするのが主成分分析です。しかしその際、特定のデータは切り捨ててしまう、という点はデメリットかもしれません。ただし、各主成分に対応した新しい指標や固有値、寄与率など、整理された新たな指標を得られることも事実です。こうしたメリットを目的に合わせて活かすことで、効果的に施策を進めていけます。

より効率的にデータ分析を行うならIT コミュニケーションズのデータ分析サービス

以上、9つのデータ分析手法を紹介しました。すべてにおいて大切なのは、「明確な目的を持って、それに適した手法を選択し、効果的に活用すること」です。
こうしたデータ分析は自社で行う場合、専門的なスキルを持った人材の確保が必須となり、当然コストも発生します。そこで、自社で行うよりも専門として取り扱う会社に分析業務を依頼することも大きな選択肢となります。これにより、手軽かつ効果的な分析を行っていけるのです。

株式会社ITコミュニケーションズは、Googleアナリティクスなどのアクセス解析をはじめ、広告やその他のマーケティング施策によって得られるデータの取得設計から分析までを手掛ける企業です。

さまざまなサービスを提供していますが、中でもアクセスログとデータ分析サービスに関しては、データ分析のスペシャリストによる分析・活用サポートを用意しています。具体的には、BtoB領域における見込み客の属性情報やオンライン上の行動履歴、セミナーや展示会参加者を対象としたオフライン行動履歴などのデータ分析に関して、非常に高いクオリティのサービスを提供しています。

アクセスログ・データ分析サービスの利用により、自社サイトへアクセスした個人や企業のうち、有効な見込み客の抽出や評価を得られているコンテンツの傾向の把握が可能です。これらを実現することで、顧客それぞれに効果的なアプローチができ、さらに費用対効果の高いマーケティング施策を実行できるようになっていきます。

また、データ分析をすべて同社へ任せることで、自社の労働力をマーケティングやセールスへ注力する体制が整うので、生産性向上を期待できます。

まとめ

データ分析を行うことで、経営戦略における意思決定が迅速に行え、効果的なマーケティングが可能になります。そのためには自社が抱える大量のデータに対して、明確な分析目的と適切な分析手法の選択が重要です。データを適切に活用すれば、プロモーションやセールスのみならず、サービス開発や研究など幅広い分野への寄与が望めます。

自社でデータ分析を行う際は、専門的なスキルを持った人材の確保と分析体制の構築が必要です。そのため社外の分析専門企業に依頼するのも一つの手と言えます。データ分析の専門家が在籍するIT コミュニケーションズの分析サービスなら、依頼後すぐにデータ分析を開始できますので、ぜひご一考ください。

世界一やさしいデジタルマーケティング B2Bマーケティング編

関連記事

CONTACTお問合わせ

お取引全般や、
採用に関するお問合わせは、こちら